Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.514
1.
Infect Genet Evol ; 121: 105603, 2024 May 08.
Article En | MEDLINE | ID: mdl-38723983

In the mountainous, rural regions of eastern China, tuberculosis (TB) remains a formidable challenge; however, the long-term molecular epidemiological surveillance in these regions is limited. This study aimed to investigate molecular and spatial epidemiology of TB in two mountainous, rural counties of Zhejiang Province, China, from 2015 to 2021, to elucidate the recent transmission and drug-resistance profiles. The predominant Lineage 2 (L2) Beijing family accounted for 80.1% of total 532 sequenced Mycobacterium tuberculosis (Mtb) strains, showing consistent prevalence over seven years. Gene mutations associated with drug resistance were identified in 19.4% (103/532) of strains, including 47 rifampicin or isoniazid-resistant strains, eight multi-drug-resistant (MDR) strains, and five pre-extensively drug-resistant (pre-XDR) strains. Genomic clustering revealed 53 distinct clusters with an overall transmission clustering rate of 23.9% (127/532). Patients with a history of retreatment and those infected with L2 strains had a higher risk of recent transmission. Spatial and epidemiological analysis unveiled significant transmission hotspots, especially in densely populated urban areas, involving various public places such as medical institutions, farmlands, markets, and cardrooms. The study emphasizes the pivotal role of Beijing strains and urban-based TB transmission in the western mountainous regions in Zhejiang, highlighting the urgent requirement for specific interventions to mitigate the impact of TB in these unique communities.

2.
J Nurs Scholarsh ; 2024 May 01.
Article En | MEDLINE | ID: mdl-38691056

BACKGROUND: Cancer screening is a pivotal method for reducing mortality from disease, but the screening coverage is still lower than expected. Telehealth interventions demonstrated significant benefits in cancer care, yet there is currently no consensus on their impact on facilitating cancer screening or on the most effective remote technology. DESIGN: A network meta-analysis was conducted to detect the impact of telehealth interventions on cancer screening and to identify the most effective teletechnologies. METHODS: Six English databases were searched from inception until July 2023 to yield relevant randomized controlled trials (RCTs). Two individual authors completed the literature selection, data extraction, and methodological evaluations using the Cochrane Risk of Bias tool. Traditional pairwise analysis and network meta-analysis were performed to identify the overall effects and compare different teletechnologies. RESULTS: Thirty-four eligible RCTs involving 131,644 participants were enrolled. Overall, telehealth interventions showed statistically significant effects on the improvement of cancer screening. Subgroup analyses revealed that telehealth interventions were most effective for breast and cervical cancer screening, and rural populations also experienced benefits, but there was no improvement in screening for older adults. The network meta-analysis indicated that mobile applications, video plus telephone, and text message plus telephone were associated with more obvious improvements in screening than other teletechnologies. CONCLUSION: Our study identified that telehealth interventions were effective for the completion of cancer screening and clarified the exact impact of telehealth on different cancer types, ages, and rural populations. Mobile applications, video plus telephone, and text message plus telephone are the three forms of teletechnologies most likely to improve cancer screening. More well-designed RCTs involving direct comparisons of different teletechnologies are needed in the future. CLINICAL RELEVANCE: Telehealth interventions should be encouraged to facilitate cancer screening, and the selection of the optimal teletechnology based on the characteristics of the population is also necessary.

3.
Se Pu ; 42(5): 410-419, 2024 Apr 08.
Article Zh | MEDLINE | ID: mdl-38736384

Protein A affinity chromatographic materials are widely used in clinical medicine and biomedicine because of their specific interactions with immunoglobulin G (IgG). Both the characteristics of the matrix, such as its structure and morphology, and the surface modification method contribute to the affinity properties of the packing materials. The specific, orderly, and oriented immobilization of protein A can reduce its steric hindrance with the matrix and preserve its bioactive sites. In this study, four types of affinity chromatographic materials were obtained using agarose and polyglycidyl methacrylate (PGMA) spheres as substrates, and multifunctional epoxy and maleimide groups were used to fix protein A. The effects of the ethylenediamine concentration, reaction pH, buffer concentration, and other conditions on the coupling efficiency of protein A and adsorption performance of IgG were evaluated. Multifunctional epoxy materials were prepared by converting part of the epoxy groups of the agarose and PGMA matrices into amino groups using 0.2 and 1.6 mol/L ethylenediamine, respectively. Protein A was coupled to the multifunctional epoxy materials using 5 mmol/L borate buffer (pH 8) as the reaction solution. When protein A was immobilized on the substrates by maleimide groups, the agarose and PGMA substrates were activated with 25% (v/v) ethylenediamine for 16 h to convert all epoxy groups into amino groups. The maleimide materials were then converted into amino-modified materials by adding 3 mg/mL 3-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) dissolved in dimethyl sulfoxide (DMSO) and then suspended in 5 mmol/L borate buffer (pH 8). The maleimide groups reacted specifically with the C-terminal of the sulfhydryl group of recombinant protein A to achieve highly selective fixation on both the agarose and PGMA substrates. The adsorption performance of the affinity materials for IgG was improved by optimizing the bonding conditions of protein A, such as the matrix type, matrix particle size, and protein A content, and the adsorption properties of each affinity material for IgG were determined. The column pressure of the protein A affinity materials prepared using agarose or PGMA as the matrix via the maleimide method was subsequently evaluated at different flow rates. The affinity materials prepared with PGMA as the matrix exhibited superior mechanical strength compared with the materials prepared with agarose. Moreover, an excellent linear relationship between the flow rate and column pressure of 80 mL/min was observed for this affinity material. Subsequently, the effect of the particle size of the PGMA matrix on the binding capacity of IgG was investigated. Under the same protein A content, the dynamic binding capacity of the affinity materials on the PGMA matrix was higher when the particle size was 44-88 µm than when other particle sizes were used. The properties of the affinity materials prepared using the multifunctional epoxy and maleimide-modified materials were compared by synthesizing affinity materials with different protein A coupling amounts of 1, 2, 4, 6, 8, and 10 mg/mL. The dynamic and static binding capacities of each material for bovine IgG were then determined. The prepared affinity material was packed into a chromatographic column to purify IgG from bovine colostrum. Although all materials showed specific adsorption selectivity for IgG, the affinity material prepared by immobilizing protein A on the PGMA matrix with maleimide showed significantly better performance and achieved a higher dynamic binding capacity at a lower protein grafting amount. When the protein grafting amount was 15.71 mg/mL, the dynamic binding capacity of bovine IgG was 32.23 mg/mL, and the dynamic binding capacity of human IgG reached 54.41 mg/mL. After 160 cycles of alkali treatment, the dynamic binding capacity of the material reached 94.6% of the initial value, indicating its good stability. The developed method is appropriate for the production of protein A affinity chromatographic materials and shows great potential in the fields of protein immobilization and immunoadsorption material synthesis.


Chromatography, Affinity , Staphylococcal Protein A , Chromatography, Affinity/methods , Staphylococcal Protein A/chemistry , Adsorption , Immunoglobulin G/chemistry , Polymethacrylic Acids/chemistry , Sepharose/chemistry
4.
Am J Transl Res ; 16(4): 1353-1365, 2024.
Article En | MEDLINE | ID: mdl-38715836

BACKGROUND: There is no reliable means to evaluate the immune status of liver transplant recipients. We proposed a novel score model, namely Mingdao immune cell analysis and Mingdao immune score system, to quantify the immunity. METHODS: Data from those who underwent a single liver transplant between January 2017 and June 2020 at Beijing Chaoyang Hospital, were collected. In addition, healthy volunteers were also enrolled. The score model was based on the immune cell populations determined by flow cytometry. RESULTS: There were a total of 376 healthy controls with 376 tests and 148 liver transplant recipients with 284 tests in this study. Evaluated by Mingdao immune cell analysis and Mingdao immune score system, the mean scores of healthy controls were near zero suggesting a balanced immune system. In contrast, the mean scores of liver transplant recipients were negative both before and after surgery indicating a compromised immune system. When liver transplant recipients were given a reduced or routine first dose according to their preoperative score, they had similar recovery of liver function. Moreover, liver transplant recipients with increased scores ≥ 5 were associated with elevated aspartate transaminase and alanine amiotransferase. Finally, on multivariate analysis the score model was the only significant independent risk factor for clinical acute rejection (P = 0.021; Odds ratio, 0.913; 95% confidence interval, 0.845-0.987). CONCLUSION: The novel score model could be used as an indicator to reflect immunity and to regulate immunosuppressants in liver transplant recipients after surgery.

5.
Carbohydr Polym ; 337: 122088, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38710544

The construction of the preferred orientation structure by stretching is an efficient strategy to fabricate high-performance cellulose film and it is still an open issue whether crystalline structure or amorphous molecular chain is the key factor in determining the enhanced mechanical performance. Herein, uniaxial stretching with constant width followed by drying in a stretching state was carried out to cellulose hydrogels with physical and chemical double cross-linking networks, achieving high-performance regenerated cellulose films (RCFs) with an impressive tensile strength of 154.5 MPa and an elastic modulus of 5.4 GPa. The hierarchical structure of RCFs during uniaxial stretching and drying was systematically characterized from micro- to nanoscale, including microscopic morphology, crystalline structure as well as relaxation behavior at a molecular level. The two-dimensional correlation spectra of dynamic mechanical analysis and Havriliak-Negami fitting results verified that the enhanced mechanical properties of RCFs were mainly attributed to the stretch-induced tight packing and restricted relaxation of amorphous molecular chains. The new insight concerning the contribution of molecular chains in the amorphous region to the enhancement of mechanical performance for RCFs is expected to provide valuable guidance for designing and fabricating high-performance eco-friendly cellulose-based films.

6.
Article En | MEDLINE | ID: mdl-38712510

Phase transition materials with switchable second-order nonlinear optical (NLO) properties have attracted extensive attention because of their great application potential in photoelectric switches, sensors, and modulators, while metal-free organics with NLO switchability near room temperature remain scarce. Herein, we report a hydrogen-bonded metal-free organic crystal, 2-methylpropan-2-aminium 2,2-dimethylpropanoate (1), exhibiting a room-temperature phase transition and favorable NLO switchability. Through investigations on its thermal anomalies, dielectric properties, and crystal structures, we uncover that 1 holds a near-room-temperature phase transition at 303 K from noncentrosymmetric point group C2v to centrosymmetric one D2h, which is attributed to the order-disorder transformations of both tert-butylamine cations and dimethylpropionic acid anions. Accompanied by symmetry change during the phase transition, 1 exhibits reversible and repeatable NLO "on-off" switchability with a desirable switching contrast ratio of ca. 19 between high and low NLO states. This discovery demonstrates a metal-free organic crystal with NLO switching behavior near room temperature, serving as a promising candidate in smart and ecofriendly photoelectric functional materials and devices.

7.
BMC Womens Health ; 24(1): 277, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714996

BACKGROUND: Quality of life research can guide clinical workers to adopt more targeted treatment and intervention measures, so as to achieve the purpose of improving patients' quality of life. The objective of this study was to evaluate health-related quality of life in Chinese patients with cervical cancer and to explore its influencing factors. METHODS: A total of 186 patients with cervical cancer were investigated by using the QLICP-CE (V2.0) scale (Quality of Life Instruments for Cancer Patients-Cervical Cancer) developed by our group in China. The data were analyzed by t-test, one-way ANOVA, univariate analysis, and multivariate linear regression. RESULTS: The total score of quality of life scale for cervical cancer patients was (62.58 ± 12.69), Univariate analysis of objective clinical indexes showed that creatinine concentration was a negative influence factor in the psychological domain, potassium ion concentration was a negative influence factor in the common symptoms and side effect domain, erythrocyte content was a positive influence factor physical domain and common general domain. Multiple linear regression results suggested that clinical staging was the influencing factor of common symptom and side effect domain, common general module and total score of scale. Marital status has different degrees of influence on the psychological, social, and common general domains. The level of education also influenced scores in the social domain. CONCLUSION: The total score of quality of life in patients with cervical cancer who received active treatment was acceptable. Marital status, clinical staging, and educational level are the factors that affect the quality of life of patients with cervical cancer. At the same time, potassium ion concentration, red blood cell count and creatinine concentration also have important effects on quality of life in patients with cervical cancer. Therefore, it is very important to give personalized treatment and nursing to patients based on various factors.


Quality of Life , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/psychology , Quality of Life/psychology , Middle Aged , Adult , China/epidemiology , Surveys and Questionnaires , Aged , Neoplasm Staging , Creatinine/blood , Marital Status , Linear Models
8.
Cell Rep ; 43(5): 114211, 2024 May 08.
Article En | MEDLINE | ID: mdl-38722741

Multiple myeloma (MM) remains an incurable hematological malignancy demanding innovative therapeutic strategies. Targeting MYC, the notorious yet traditionally undruggable oncogene, presents an appealing avenue. Here, using a genome-scale CRISPR-Cas9 screen, we identify the WNK lysine-deficient protein kinase 1 (WNK1) as a regulator of MYC expression in MM cells. Genetic and pharmacological inhibition of WNK1 reduces MYC expression and, further, disrupts the MYC-dependent transcriptional program. Mechanistically, WNK1 inhibition attenuates the activity of the immunoglobulin heavy chain (IgH) enhancer, thus reducing MYC transcription when this locus is translocated near the MYC locus. WNK1 inhibition profoundly impacts MM cell behaviors, leading to growth inhibition, cell-cycle arrest, senescence, and apoptosis. Importantly, the WNK inhibitor WNK463 inhibits MM growth in primary patient samples as well as xenograft mouse models and exhibits synergistic effects with various anti-MM compounds. Collectively, our study uncovers WNK1 as a potential therapeutic target in MM.

10.
Cell Rep Med ; : 101531, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38697105

The clinical applications of immunocytokines are severely restricted by dose-limiting toxicities. To address this challenge, here we propose a next-generation immunocytokine concept involving the design of LH05, a tumor-conditional anti-PD-L1/interleukin-15 (IL-15) prodrug. LH05 innovatively masks IL-15 with steric hindrance, mitigating the "cytokine sink" effect of IL-15 and reducing systemic toxicities associated with wild-type anti-PD-L1/IL-15. Moreover, upon specific proteolytic cleavage within the tumor microenvironment, LH05 releases an active IL-15 superagonist, exerting potent antitumor effects. Mechanistically, the antitumor efficacy of LH05 depends on the increased infiltration of CD8+ T and natural killer cells by stimulating the chemokines CXCL9 and CXCL10, thereby converting cold tumors into hot tumors. Additionally, the tumor-conditional anti-PD-L1/IL-15 can synergize with an oncolytic virus or checkpoint blockade in advanced and metastatic tumor models. Our findings provide a compelling proof of concept for the development of next-generation immunocytokines, contributing significantly to current knowledge and strategies of immunotherapy.

11.
World J Clin Oncol ; 15(4): 531-539, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38689626

Metastasis remains a major challenge in the successful management of malignant diseases. The liver is a major site of metastatic disease and a leading cause of death from gastrointestinal malignancies such as colon, stomach, and pancreatic cancers, as well as melanoma, breast cancer, and sarcoma. As an important factor that influences the development of metastatic liver cancer, alternative splicing drives the diversity of RNA transcripts and protein subtypes, which may provide potential to broaden the target space. In particular, the dysfunction of splicing factors and abnormal expression of splicing variants are associated with the occurrence, progression, aggressiveness, and drug resistance of cancers caused by the selective splicing of specific genes. This review is the first to provide a detailed summary of the normal splicing process and alterations that occur during metastatic liver cancer. It will cover the role of alternative splicing in the mechanisms of metastatic liver cancer by examining splicing factor changes, abnormal splicing, and the contribution of hypoxia to these changes during metastasis.

12.
Cancer Commun (Lond) ; 2024 May 13.
Article En | MEDLINE | ID: mdl-38741375

BACKGROUND: Camrelizumab plus apatinib have demonstrated robust antitumor activity and safety in patients with advanced cervical cancer (CLAP study; NCT03816553). We herein present the updated long-term results of the CLAP study and explore potential biomarkers for survival. The outcomes of patients who underwent immune checkpoint inhibitor (ICI) retreatment were also reported. METHODS: In this phase II trial, eligible patients received camrelizumab 200 mg intravenously every two weeks and apatinib 250 mg orally once daily in 4-week cycles for up to two years. Treatment was continued until disease progression, unacceptable toxicity, or withdrawal of consent. RESULTS: Between January 21 and August 1, 2019, a total of 45 patients were enrolled. Data were analyzed as of July 31, 2023, representing > 48 months since treatment initiation for all patients. Nine (20.0%) patients completed the 2-year study. The median duration of response (DOR) was 16.6 months, and 45.0% of patients achieved a DOR of ≥ 24 months. The 12-month progression-free survival (PFS) rate was 40.7% (95% confidence interval [CI], 25.2-55.6), with an 18-month PFS rate of 37.8% (95% CI, 22.7-52.8). The median overall survival (OS) was 20.3 months (95% CI, 9.3-36.9), and the 24-month OS rate was 47.8% (95% CI, 31.7-62.3). Age > 50 years, programmed death-ligand 1 (PD-L1) combined positive score (CPS) ≥ 1 (versus [vs.] < 1), CPS ≥ 10 (vs. < 1), high tumor mutational burden, and PIK3CA mutations were associated with improved PFS (hazard ratio [HR] < 1) and longer OS (HR < 1). Eight patients who initially responded in the CLAP trial but later experienced disease progression were retreated with ICIs. Among them, 2 (25.0%) achieved a partial response, while 5 (62.5%) had stable disease. Notably, four patients who received retreatment with ICIs survived for more than 45 months. No new safety signals were identified in the present study. CONCLUSION: Long-term survival follow-up data demonstrated that camrelizumab plus apatinib has robust, sustained, and durable efficacy in patients with advanced cervical cancer who progress after first-line platinum-based chemotherapy. No new safety signals were noted with long-term treatment.

13.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1000-1006, 2024 Feb.
Article Zh | MEDLINE | ID: mdl-38621907

This study aims to investigate the effect and mechanism of Maxingshigan Decoction on inflammation in the rat model of cough variant asthma(CVA). The SPF-grade SD rats of 6-8 weeks were randomized into normal, model, Montelukast sodium, and low-, medium-, and high-dose Maxing Shigan Decoction groups, with 8 rats in each group. The CVA rat model was induced by ovalbumin(OVA) and aluminum hydroxide sensitization and ovalbumin stimulation. The normal group and model group were administrated with equal volume of normal saline by gavage, and other groups with corresponding drugs by gavage. After the experiment, the number of white blood cells in blood and the levels of interleukin-6(IL-6), interleukin-10(IL-10), and tumor necrosis factor-α(TNF-α) in the serum were measured. The lung tissue was stained with hematoxylin-eosin(HE). Western blot was employed to determine the protein levels of nuclear factor-κB(NF-κB), Toll-like receptor 4(TLR4), myeloid differentiation protein(MyD88), and mitogen-activated protein kinase(MAPK) in the lung tissue. Real-time PCR was carried out to measure the mRNA levels of TLR4 and MyD88 in the lung tissue. Compared with the normal group, the model group showed increased white blood cells, elevated IL-6 and TNF-α levels(P<0.01), lowered IL-10 level(P<0.01), up-regulated protein levels of TLR4, MyD88, p-p65/NF-κB p65, and p-p38 MAPK/p38 MAPK(P<0.01) and mRNA levels of TLR4 and MyD88(P<0.01) in the lung tissue. HE staining showed obvious infiltration of inflammatory cells around the airway and cell disarrangement in the model group. Compared with the model group, Montelukast sodium and high-dose Maxing Shigan Decoction reduced the white blood cells, lowered the IL-6 and TNF-α levels(P<0.01), and elevated the IL-10 level(P<0.01). Moreover, they down-regulated the protein levels of TLR4, MyD88, p-p65/NF-κB p65, p-p38 MAPK/p38 MAPK in the lung tissue(P<0.01) and the mRNA levels of TLR4 and MyD88 in the lung tissue(P<0.01). HE staining showed that Montelukast sodium and high-dose Maxing Shigan Decoction reduced inflammatory cell infiltration and cell disarrangement. The number of white blood cells, the levels of IL-10 and TNF-α in the serum, the protein levels of TLR4, MyD88, p-p65/NF-κB p65, and p-p38 MAPK/p38 MAPK, and the mRNA levels of TLR4 and MyD88 in the lung tissue showed no significant differences between the Montelukast sodium group and high-dose Maxing Shigan Decoction group. Maxing Shigan Decoction can inhibit airway inflammation in CVA rats by inhibiting the activation of TLR4/MyD88/NF-κB and p38 MAPK signaling pathways.


Acetates , Cough-Variant Asthma , Cyclopropanes , NF-kappa B , Quinolines , Sulfides , Rats , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Interleukin-10/genetics , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Rats, Sprague-Dawley , Ovalbumin , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Inflammation , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , RNA, Messenger
14.
J Robot Surg ; 18(1): 186, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38683492

The study aims to assess the available literature and compare the perioperative outcomes of robotic-assisted partial nephrectomy (RAPN) for posterior-lateral renal tumors using transperitoneal (TP) and retroperitoneal (RP) approaches. Systematically searched the Embase, PubMed, and Cochrane Library databases for literature. Eligible studies were those that compared TP-RAPN and RP-RAPN for posterior-lateral renal tumors. The data from the included studies were analyzed and summarized using Review Manager 5.3, which involved comparing baseline patient and tumor characteristics, intraoperative and postoperative outcomes, and oncological outcomes. The analysis included five studies meeting the inclusion criteria, with a total of 1440 patients (814 undergoing RP-RAPN and 626 undergoing TP-RAPN). Both groups showed no significant differences in age, gender, BMI, R.E.N.A.L. score, and tumor size. Notably, compared to TP-RAPN, the RP-RAPN group demonstrated shorter operative time (OT) (MD: 17.25, P = 0.01), length of hospital stay (LOS) (MD: 0.37, P < 0.01), and lower estimated blood loss (EBL) (MD: 15.29, P < 0.01). However, no significant differences were found between the two groups in terms of warm ischemia time (WIT) (MD: -0.34, P = 0.69), overall complications (RR: 1.25, P = 0.09), major complications (the Clavien-Dindo classification ≥ 3) (RR: 0.97, P = 0.93), and positive surgical margin (PSM) (RR: 1.06, P = 0.87). The systematic review and meta-analysis suggests RP-RAPN may be more advantageous for posterior-lateral renal tumors in terms of OT, EBL, and LOS, but no significant differences were found in WIT, overall complications, major complications, and PSM. Both surgical approaches are safe, but a definitive advantage remains uncertain.


Kidney Neoplasms , Laparoscopy , Length of Stay , Nephrectomy , Operative Time , Robotic Surgical Procedures , Female , Humans , Male , Blood Loss, Surgical/statistics & numerical data , Kidney Neoplasms/surgery , Laparoscopy/methods , Length of Stay/statistics & numerical data , Nephrectomy/methods , Peritoneum/surgery , Postoperative Complications/etiology , Postoperative Complications/epidemiology , Robotic Surgical Procedures/methods , Treatment Outcome
15.
Sci Rep ; 14(1): 8893, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38632459

Here, this study reports single-band red upconversion emission in ß-Ba2ScAlO5: Yb3+/Er3+ phosphor by doping Mn2+. The optimum concentration of Mn2+ ions in ß-Ba2ScAlO5: Yb3+/Er3+ phosphor was 0.20. The intensity of red and green emissions is increased by 27.4 and 19.3 times, respectively. Compared with the samples without Mn2+ ions, the red-green integral strength ratio of ß-Ba2ScAlO5: Yb3+/Er3+/Mn2+ sample was significantly increased by 28.4 times, reaching 110.9. The UCL mechanism was explored by analyzing the down-conversion luminescence spectra, absorption spectra, UCL spectra, and upconversion fluorescence lifetime decay curves of Yb3+/Er3+/Mn2+ co-doped ß-Ba2ScAlO5. The enhancement of upconversion red light is achieved through energy transfer between defect bands and Er3+ ions, as well as energy transfer between Mn2+ ions and Er3+ ions. In addition, the Mn2+ doped ß-Ba2ScAlO5: Yb3+/Er3+ red UCL phosphors have great potential for ambient temperature sensing in the 298-523 K temperature range. The maximum sensitivity of ß-Ba2ScAlO5: Yb3+/Er3+/Mn2+ phosphor as a temperature sensor at 523 K is 0.0247 K-1.

16.
Bull Environ Contam Toxicol ; 112(4): 58, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38594479

This study investigated the species, density, biomass and physicochemical factors of benthic macroinvertebrates in Hongze Lake from 2016 to 2020. Redundancy analysis (RDA) was used to analyze the relationship between physicochemical parameters and the community structure of macroinvertebrates. Macroinvertebrate-based indices were used to evaluate the water quality conditions in Hongze Lake. The results showed that a total of 50 benthic species (10 annelids, 21 arthropods and 19 mollusks) were collected. The community structure of benthic macroinvertebrates varied in time and space. The dominant species were Limnodrilus hoffmeisteri (L.hoffmeisteri), Corbicula fluminea (C.fluminea), Nephtys oligobranchia (N.oligobranchia). In 2016, arthropods such as Grandidierella sp. were the dominant species of benthos in Hongze Lake while annelids and mollusks dominated from 2017 to 2020, such as L.hoffmeisteri, N.oligobranchia, C.fluminea. The benthic fauna of Chengzi Lake and Lihewa District were relatively abundant and showed slight variation, while the benthic macroinvertebrates of the Crossing the water area were few and varied greatly. RDA showed that changes in benthic macroinvertebrate structure were significantly correlated with dissolved oxygen (DO), Pondus Hydrogenii (pH) and transparency (SD). The Shannon Wiener, Pielou, and Margalef indices indicate that Hongze Lake is currently in a moderately polluted state. Future studies should focus on the combined effects of various physicochemical indicators and other environmental factors on benthic communities.


Arthropods , Oligochaeta , Animals , Invertebrates , Lakes , Water Quality , Mollusca , Environmental Monitoring , Ecosystem
17.
Article En | MEDLINE | ID: mdl-38618193

Aim: To explore the diagnostic value of serum-derived exosomal miRNAs and predict the roles of their target genes in Alzheimer's disease (AD) based on the expression of miRNAs in AD patients. Methods: We determined the relative concentration of exosomal miRNAs by High-throughput Second-generation Sequencing and real-time quantitative real-time PCR. Results: 71 AD patients and 71 ND subjects were collected. The study demonstrated that hsa-miR-125b-1-3p, hsa-miR-193a-5p, hsa-miR-378a-3p, hsa-miR-378i and hsa-miR-451a are differentially expressed in the serum-derived exosomes of AD patients compared with healthy subjects. According to ROC analysis, hsa-miR-125b-1-3p has an AUC of 0.765 in the AD group compared to the healthy group with a sensitivity and specificity of 82.1-67.7%, respectively. Enrichment analysis of its target genes showed that they were related to neuroactive ligand-receptor interactions, the PI3K-Akt signaling pathway, the Hippo signaling pathway and nervous system-related pathways. And, hsa-miR-451a had an AUC of 0.728 that differentiated the AD group from the healthy group with a sensitivity and specificity of 67.9% and 72.6%, respectively. Enrichment analysis of its target genes showed a relationship with cytokine-cytokine receptor interactions and the PI3K-Akt signaling pathway. Conclusion: The dysregulation of serum exosomal microRNAs in patients with AD may promote the diagnosis of AD. The target genes of miRNAs may be involved in the occurrence and development of AD through various pathways.

18.
Mol Neurobiol ; 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649660

Light-based photo-stimulation has demonstrated promising effects on stem cell behavior, particularly in optimizing neurogenesis. However, the precise parameters for achieving optimal results, including the wavelengths, light intensity, radiating energy, and underlying mechanisms, remain incompletely understood. In this study, we focused on utilizing ultraviolet-C (UV-C) at a specific wavelength of 254 nm, with an ultra-low dose at intensity of 330 µW/cm2 and a total energy of 594 mJ/cm2 per day over a period of seven days, to stimulate the proliferation and differentiation of mouse neural stem cells (NSCs). The results revealed that the application of ultra-low-dose UV-C yielded the most significant effect in promoting differentiation when compared to mixed ultraviolet (UV) and ultraviolet-A (UV-A) radiation at equivalent exposure levels. The mechanism exploration elucidated the role of Presenilin 1 in mediating the activation of ß-catenin and Notch 1 by the UV-C treatment, both of which are key factors facilitating NSCs proliferation and differentiation. These findings introduce a novel approach employing ultra-low-dose UV-C for specifically enhancing NSC differentiation, as well as the underlying mechanism. It would contribute valuable insights into brain stimulation and neurogenesis modulation for various diseases, offering potential therapeutic avenues for further exploration.

19.
Phytother Res ; 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38634416

The discovery of alternative medicines with fewer adverse effects is urgently needed for rheumatoid arthritis (RA). Sophoridine (SR), the naturally occurring quinolizidine alkaloid isolated from the leguminous sophora species, has been demonstrated to possess a wide range of pharmacological activities. However, the effect of SR on RA remains unknown. In this study, the collagen-induced arthritis (CIA) rat model and tumor necrosis factor alpha (TNFα)-induced fibroblast-like synoviocytes (FLSs) were utilized to investigate the inhibitory effect of SR on RA. The anti-arthritic effect of SR was evaluated using the CIA rat model in vivo and TNFα-stimulated FLSs in vitro. Mechanistically, potential therapeutic targets and pathways of SR in RA were analyzed through drug target databases and disease databases, and validation was carried out through immunofluorescence, immunohistochemistry, and Western blot. The in vivo results revealed that SR treatment effectively ameliorated synovial inflammation and bone erosion in rats with CIA. The in vitro studies showed that SR could significantly suppress the proliferation and migration in TNFα-induced arthritic FLSs. Mechanistically, SR treatment efficiently inhibited the activation of MAPKs (JNK and p38) and NF-κB pathways in TNFα-induced arthritic FLSs. These findings were further substantiated by Immunohistochemistry results in the CIA rat. SR exerts an anti-arthritic effect in CIA rats through inhibition of the pathogenic characteristic of arthritic FLSs via suppressing NF-κB and MAPKs (JNK and p38) signaling pathways. SR may have a great potential for development as a novel therapeutic agent for RA treatment.

20.
J Orthop Translat ; 45: 197-210, 2024 Mar.
Article En | MEDLINE | ID: mdl-38685969

Background/objective: As the pivotal cellular mediators of bone resorption and pathological bone remodeling, osteoclasts have emerged as a prominent target for anti-resorptive interventions. Pinocembrin (PIN), a predominant flavonoid found in damiana, honey, fingerroot, and propolis, has been recognized for its potential therapeutic effects in osteolysis. The purpose of our project is to investigate the potential of PIN to prevent bone resorption in ovariectomized (OVX) mice by suppressing osteoclast production through its underlying mechanisms. Methods: The study commenced by employing protein-ligand molecular docking to ascertain the specific interaction between PIN and nuclear factor-κB (NF-κB) ligand (RANKL). Subsequently, PIN was introduced to bone marrow macrophages (BMMs) under the stimulation of RANKL. The impact of PIN on osteoclastic activity was assessed through the utilization of a positive TRAcP staining kit and a hydroxyapatite resorption assay. Furthermore, the study investigated the generation of reactive oxygen species (ROS) in osteoclasts induced by RANKL using H2DCFDA. To delve deeper into the underlying mechanisms, molecular cascades triggered by RANKL, including NF-κB, ROS, calcium oscillations, and NFATc1-mediated signaling pathways, were explored using Luciferase gene report, western blot analysis, and quantitative real-time polymerase chain reaction. Moreover, an estrogen-deficient osteoporosis murine model was established to evaluate the therapeutic effects of PIN in vivo. Results: In this study, we elucidated the profound inhibitory effects of PIN on osteoclastogenesis and bone resorption, achieved through repression of NF-κB and NFATc1-mediated signaling pathways. Notably, PIN also exhibited potent anti-oxidative properties by mitigating RANKL-induced ROS generation and augmenting activities of ROS-scavenging enzymes, ultimately leading to a reduction in intracellular ROS levels. Moreover, PIN effectively abrogated the expression of osteoclast-specific marker genes (Acp5, Cathepsin K, Atp6v0d2, Nfatc1, c-fos, and Mmp9), further underscoring its inhibitory impact on osteoclast differentiation and function. Additionally, employing an in vivo mouse model, we demonstrated that PIN effectively prevented osteoclast-induced bone loss resultant from estrogen deficiency. Conclusion: Our findings highlight the potent inhibitory effects of PIN on osteoclastogenesis, bone resorption, and RANKL-induced signaling pathways, thereby establishing PIN as a promising therapeutic candidate for the prevention and management of osteolytic bone diseases. The translational potential of this article: PIN serves as a promising therapeutic agent for the prevention and management of osteolytic bone diseases and holds promise for future clinical applications in addressing conditions characterized by excessive bone resorption. PIN is a natural compound found in various sources, including damiana, honey, fingerroot, and propolis. Its widespread availability and potential for therapeutic use make it an attractive candidate for further investigation and development as a clinical intervention.

...